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a b s t r a c t

Previously reported forms of the cation–anion Buckingham potential provide a significantly greater con-
tribution than the repulsive Coulombic component at short-range thus predicting an unphysical attrac-
tion between the pair of ions. A detailed reappraisal of the computer modelling of uranium dioxide (UO2)
employing atomistic simulation techniques is presented. An improved set of interatomic potentials is
derived in order to describe the lattice correctly under conditions subsequent to radiation damage with
the creation of Frenkel pair defects.

Novel methodology is employed in the derivation of potentials ensuring applicability over the entire
region of interest. The cation–anion potential is obtained via a combination of empirical fitting to crystal
structural data and parametric fitting to additional physical properties. These potentials are subsequently
verified and validated by calculation of additional bulk lattice properties, whose values agree favourably
with those measured experimentally.

Atomistic computer simulation techniques are then used to investigate the defect properties of UO2.
The theoretical techniques are based upon efficient energy minimization procedures and Mott–Littleton
methodology for accurate defect modelling and employed to calculate intrinsic defect formation energies
and enable predictions of the expected type of intrinsic disorder to be made.

Crown Copyright � 2010 Published by Elsevier B.V. All rights reserved.
1. Introduction

Uranium dioxide (UO2) has received renewed attention recently
[1–3] following a nuclear renaissance driven by growing aware-
ness of issues associated with CO2 emissions, security of energy
supply and waning fossil fuel reserves. Indeed, nuclear energy
holds the promise to provide vast quantities of reliable baseline
electricity at commercially competitive costs with modest environ-
mental impact [4]. Interest in oxides as nuclear fuels, and in partic-
ular UO2, began in the 1950s [5], with the introduction of UO2 as a
fuel in the BWR, PWR, CANDU and AGR reactor systems occurring
during the following decade.

Currently, UO2 is employed as the standard fuel in light water
nuclear reactors due, in part, to its desirable properties which in-
clude: maintaining the fluorite structure over a wide temperature
range up to a melting point of �3125 K, accommodating substan-
tial quantities of fission products without significant perturbation
of the lattice, maintaining these useful properties in a variety of
environments and exhibiting chemical stability [6,2].

UO2 is also of great technological importance in other arenas
and improved understanding of the factors which can limit or in-
010 Published by Elsevier B.V. All
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duce uranium corrosion is of interest to a variety of industrial
activities [7,8]. The extreme affinity of pure uranium for oxygen
is well documented [9] with at least 16 oxides observed between
UO2 and UO3 comprising the principal products of uranium metal
corrosion [10]. Once formed as a layer on the surface of metallic
uranium, the oxides act as a passive barrier to further corrosion.
Thus, it is a generally accepted view that the reactivity of uranium
towards various gases is affected primarily by the properties of its
native oxide layer. For example, in the case of uranium–hydrogen
systems, the surface oxide layer prevents rapid concentration of
hydrogen at the metal surface and, as a result, provides a limiting
influence on the onset of the gas–solid reaction that forms pyro-
phoric uranium hydride (UH3).

Atomistic computer simulation techniques remain complemen-
tary to experimental methods and are ideally suited to provide
fundamental insight into the defect chemistry. In view of the
importance of UO2, there remains a strong incentive for reliable
theoretical studies. For this reason several initial derivations of
interatomic potential models for UO2 [11–13], and their applica-
tion in the calculation of perfect and defect lattice properties, were
conducted during the 1970s.

Indeed, seminal computational studies of UO2 conducted in the
1980s [14–20] provide an erudite foundation for the current simu-
lations. However, the premise upon which these computer simula-
tion techniques are based, involves the specification of interatomic
rights reserved.
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potential parameters. Modifications are required in order to de-
scribe the lattice correctly under conditions experienced subse-
quent to radiation damage with the creation of Frenkel pair
defects: since reported forms of the cation–anion Buckingham po-
tential provide a significantly greater contribution than the repul-
sive Coulombic component at short-range thus effecting an
unphysical attraction between the pair of ions.

In addition, further understanding of the UO2 system coupled
with the more recent availability of experimental data and the ben-
efit of increased computational resource (both in terms of improved
hardware and enhanced simulation codes), have provided the
impetus for improving the potentials reported previously by Jack-
son et al. [18]. Moreover, the methodology employed to derive
the short-range pair potentials includes a novel approach to empir-
ical fitting which explores the parametric surface to select values
giving good accord with a wide range of observed data.

The present simulations of the UO2 bulk are an informative pre-
liminary to further research considering non-stoichiometry, substi-
tutional defects, anion transport and diffusion mechanisms and
more complex simulations of both bulk terminated and recon-
structed surfaces, which are currently being undertaken. Prior to
discussing the results of this study, the simulation approach em-
ployed is described in brief.
2. Computational techniques

2.1. Empirical potentials and calculation of lattice properties

The atomistic simulations presented here employ the same
methodology for the treatment of perfect and defective lattices
as employed in our previous studies of rare earth oxides [21] and
fluorides [22]. The atomistic approach to modelling crystal struc-
ture and associated properties involves the definition of inter-
atomic potential functions to simulate the forces acting between
ions and expresses the total energy of the system as a function of
atomic coordinates. For rare earth oxides, the calculations are
commonly formulated within a Born model representation, with
the total energy (Eij) partitioned into long-range Coulombic
interactions and a short-range analytical function (/(rij)) to model
interactions attributed to the repulsion between electron charge
clouds, van der Waals attraction, etc. described by:

Eij ¼
qiqj

rij
þ /ðrijÞ ð1Þ

where qi and qj represent formal ionic charges and rij the interatomic
distance. The short-range interaction combines a number of compo-
nents including non-bonded interactions (electron repulsion and
van der Waals attraction) and electronic polarizability. A number
of standard analytical functions are available for the non-bonded
potential, but for ionic or partially ionic materials the most com-
monly used is the Buckingham form described by Eq. (2). The form
of the Buckingham potential may be justified from a theoretical per-
spective since the repulsion between overlapping electron densi-
ties, due to the Pauli principle, takes an exponential form at
reasonable distances.

/BuckinghamðrijÞ ¼ Aij exp � rij

qij

 !
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

repulsive

�Cij

r6
ij|ffl{zffl}

attractive

ð2Þ

Eq. (2) contains a repulsive exponential and an attractive term with
constants A, q and C obtained via empirical fitting [23]. Due to the
rapid convergence of this short-range energy to zero, in order to im-
prove the efficiency of the calculations, this interaction energy func-
tion does not contribute beyond a defined cut-off of 15 Å.
It is essential to include a description of the electronic polariza-
tion of ions in studies of defect energies to account for the polari-
zation of neighbouring ions in the lattice surrounding charge
defects (although these terms are less important in simulations
purely of structural properties). Greatest success has been enjoyed
by shell model descriptions of polarizability such as that of Dick
and Overhauser [24] in which the development of an ionic dipole
is described in simple mechanical terms of the displacement of a
massless shell, representing the valence-shell electrons, relative
to a core in which all the mass is concentrated, representing the
nucleus shielded by the inner core electrons.

The ion charge is partitioned between the core and shell such
that the sum of their charges is the total ion charge. Although con-
venient to think in terms of this physical picture, in certain situa-
tions the shell may carry a positive charge, particularly for metal
cations. The core and shell are Coulombically screened from each
other, but coupled by a harmonic spring of force constant kcs. The
polarizability of the ion (a) in vacuo is related to the shell charge,
qs and spring constant, kcs by Eq. (3) and, despite its crudity, the
model has proved successful in describing the dielectric and lattice
dynamic properties of perfect and defective ionic materials.

a ¼ q2
s

kcs
ð3Þ

By convention, the short-range forces are specified to act on the
shell, while the Coulomb potential acts on both. Hence, the short-
range forces act to damp the polarizability by effectively increasing
the spring constant, and thus the polarizability is now environment
dependent. The shell model has been widely adopted within the io-
nic materials community, particularly within the UK.

The interaction (E) between the core and the massless shell, on
which all the pair potentials act, is embodied within the General
Utility Lattice Program (GULP) [25–27] and considered to adopt
the following form:

E ¼ 1
2

k2r2 þ 1
24

k4r4 ð4Þ

with r being the distance between the core and the shell, k2 repre-
senting the harmonic spring constant with anharmonic contribu-
tions from k4. k4 terms are employed in certain instances to
prevent unphysically large core-shell separations; however, only
k2 spring constants were required for this study with a maximum
core-shell separation of 0.6 Å permitted.

Having derived suitable potentials, the lattice energy of the
material is minimized by varying the structural parameters (atomic
positions and lattice parameters). Values of lattice properties, such
as elastic and dielectric constants, are calculated for the minimum
energy structure. It should be stressed, as argued previously [28],
that employing such a model does not necessarily mean that the
electron distribution corresponds to a fully ionic system and that
the general validity of the potential model is assessed primarily
by its ability to reproduce observed crystal properties. In practice,
it is found that models based on formal charges work well even
for some semicovalent compounds such as silicates and zeolites.

2.2. Calculation of defect properties

An important feature of these calculations is the treatment of
lattice relaxation about the point defect (or defect cluster). The cel-
ebrated Mott–Littleton approach [29,30] is to partition the crystal
lattice surrounding the defect into two concentric spherical regions
about a specified centre, usually considered to be the mid point of
the perturbed lattice sites. In the inner sphere (r 6 ra – region I) the
ions are strongly displaced by the presence of the defect so that the
interactions are treated explicitly and species are allowed to relax
fully. In contrast, more distant parts of the crystal lattice in the
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Fig. 1. Vacancy cluster defect energy as a function of size of region I.

Fig. 2. Representation of the Mott–Littleton two region strategy for defect
simulations.

Fig. 3. Observed crystal structure of UO2.
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outer region (r > rb – region IIb), where the defect forces are rela-
tively weak, ions interact with any net charge on the defect and
are treated implicitly as a dielectric continuum. In the region be-
tween the first and second sphere (ra < r 6 rb – region IIa) ions
are weakly perturbed leading to harmonic relaxations, this inter-
face region ensures smooth convergence between explicitly
summed and continuum regions.

In order to achieve the maximum degree of accuracy from the
Mott–Littleton methodology, careful consideration of the region I
and IIa radii is required. In order to determine the most appropri-
ate cut-offs, the dependence of the calculated energy on the size of
these regions was investigated. Results are summarized graphi-
cally in Fig. 1 for the case of a Schottky pair. It is observed that
the optimal value for a region IIa radius is double that of region I
as extending this interface region beyond this point has no signif-
icant increase in accuracy for a given region I size.

Fig. 1 demonstrates that convergence is achieved asymptoti-
cally with region I sizes above 11 Å and for calculations presented
in this report, radii of 14 and 28 Å were used for regions I and IIa
respectively, leading to �1600 ions in region I and �12,000 ions
in region IIa as illustrated in Fig. 2. These perfect and defective lat-
tice methods are embodied in the GULP code where the explicit
simulation of the inner region employs efficient energy minimiza-
tion methods which make use of first and second derivatives of the
energy functions with respect to ion coordinates.

3. Results and discussion

Uranium metal is not observed to form a passivating oxide coat-
ing, but corrodes instead on prolonged exposure to air yielding a
complex mixture of oxides: including UO2, U3O8 and several poly-
morphs of the stoichiometric UO3. The dioxide UO2 adopts the fluo-
rite structure but may incorporate interstitial oxygen anions to
form the non stoichiometric series UO2+x, 0 < x < 0.25. In order to
further the understanding of the role of the dioxide in limiting
the diffusion of hydrogen from the surface to the underlying metal,
a robust model of the UO2 lattice is required. Prior to the derivation
of suitable potentials that physically describe the system, experi-
mental observations employed by the empirical fitting procedures
are surveyed and a summary presented in the following sub
section.

3.1. Experimental data

UO2 adopts the fluorite structure [31] ðFm�3mÞ, typical of ionic
compounds, illustrated in Fig. 3. This may be considered as an fcc
lattice with a lattice constant (a0) of 5.4682 Å and a basis of a cat-
ion at the origin and anions at � 1

4 ;
1
4 ;

1
4

� �
.

In addition to the crystallographic data, elastic constants (C11,
C12 and C44), static (�0) and high frequency (�1) dielectric constants
were employed during empirical fitting procedures; a summary of
their experimental provenance is listed in Tables 1–3 in addition to
other bulk properties for subsequent comparison and validation of
the simulation.

3.2. Derivation of interatomic potentials

Govers et al. [1] provide an informative review of pair potentials
development for UO2. However, in order to describe post radiation



Table 1
Reported elastic constants for UO2.

Reference C11 (GPa) C12 (GPa) C44 (GPa)

Dolling et al. [32] 401 ± 9 108 ± 20 67 ± 6
Wachtman et al. [33] 396 ± 1.8 121 ± 1.9 64.1 ± 0.17
Fritz [34] 389.3 ± 1.7 118.7 ± 1.7 59.7 ± 0.3

Table 2
Reported dielectric constants for UO2.

Dielectric constants

Reference Static �0 High frequency �1

Dolling et al. [32] 24 5.3
Schoenes [35] 21.5 ± 1 5 ± 0.05

Table 3
Reported bulk properties for UO2.

Moduli Poisson’s

Reference Bulk Shear Young’s Ratio
K G E m
(GPa) (GPa) (GPa) –

Wachtman et al. [33] 213.0 87.0 231.0 0.319
Padel et al. [36] 183.4 75.0 204.7 0.314
Marlowe [37] 203.2 82.1 217.2 0.323
Fritz [34] 209.0 83.0 221.0 0.324

0.5 1 1.5 2 2.5 3 3.5
−150

−100

−50

0

50

100

150

Interatomic Distance / Å

Po
te

nt
ia

l E
ne

rg
y 

/ e
V

A = 9547.96, ρ = 0.2192 and C = 32

Fig. 4. Plot of the Busker O2� � � � O2� Buckingham potential.

(a) Unrelaxed (b) Relaxed

Fig. 5. Unrelaxed (a) and relaxed (b) UO2 lattice surrounding O00i .

Table 4
Lattice potential for O2� � � � O2� (Buckingham four range form).

Interaction Short-range parameters Shell modela

A q C Y k2

eV Å eV Å6 jej eV Å�2

O2� � � � O2�b 11,272.6 0.1363 134.0 �4.4 296.2

rmin cut1 rmin cut2 rmax

Å Å Å Å Å
0.0 1.2 2.1 2.6 15.0

a Y and k2 are the shell charge and spring constant respectively.
b Ref. [18].
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damaged UO2 accurately, unphysical attractive forces at short-
range effected by positive C terms for the Buckingham form require
negating. For the anion–anion potential this is achieved by
employing the ‘Buckingham four range’ function which discards
the attractive�C/r6 term below a certain distance, derived and em-
ployed successfully by Jackson et al. [18] in their studies of UO2.

For the cation–anion potential, this functional form is inappro-
priate and thus a potential is derived of the Born–Mayer form
which does not include the attractive r�6 term. A novel approach
to deriving these parameters from the available experimental data
is described which explores the parametric surface to select values
giving good accord with a wide range of observed data.

3.2.1. Anion–anion potentials
The ‘Busker’ O2� � � � O2� potential [38] illustrates the limitations

of incorporating an attractive r�6 term. Fig. 4 plots the energy of
this potential as a function of interatomic distance which is clearly
seen to become catastrophically and unphysically attractive when
the anions are separated by less than 0.75 Å.

Thus, use of a potential of this form is inadequate in simulating
anion transport or oxygen Frenkel pairs. The case of an oxygen
interstitial O00i

� �
occupying the 1

2 ;
3
4 ;

3
4

� �
position illustrates this point

in Fig. 5. The ‘relaxed’ coordinates do not reach a minimum energy
configuration and the lattice occupies an unphysical state.

This phenomenon may be avoided by employing a ‘Buckingham
four range’ potential reported by Jackson et al. [18] for UO2 and
used subsequently by Vessal et al. [39,40] in the simulation of sil-
ica. Here, only the most appropriate terms of the Buckingham func-
tion are used over the relevant interatomic distance as the function
is defined by intervals shown by Eq. (5).

/Buck4ðrijÞ ¼

Aij exp � rij

qij

� �
if rmin < rij 6 cut1P5

m¼0am rm
ij if cut1 < rij 6 rminP3

n¼0bn rn
ij if rmin < rij 6 cut2

� Cij

r6
ij

if cut2 < rij 6 rmax

8>>>>>>><
>>>>>>>:

ð5Þ
where rmax is the short-range cut-off. The potential is subjected to
the constraint that the functions and their first and second deriva-
tives must be continuous at the boundary points (cut1 and cut2) and
also that the function possess a stationary point at rmin which must
be a minimum. Values for the required parameters derived by
Jackson et al. are listed in Table 4 and used subsequently in this
study.

Constants for the polynomials (of order i) are calculated by the
spline fitting procedure embodied within the GULP code. The func-
tion is splined at cut1, rmin and cut2 so that the energy, and first and
second derivatives, are continuous using formulae shown in Eqs.
(6)–(8). The function has a stationary point at rmin occurring when
the first derivative of the function equals zero. For a minimum, the
second derivative must be greater than zero as illustrated in Eq.
(9):



Table 5
Lattice potential for U4+ � � � O2� (Buckingham form).

Interaction Short-range parameters Shell model

A q C Y k2

eV Å eV Å6 jej eV Å�2

U4+ � � � O2�a 1518.92 0.38208 65.41 6.54 94.24

a Ref. [18].

(a) Unrelaxed (b) Relaxed

Fig. 8. Unrelaxed (a) and relaxed (b) UO2 lattice surrounding U����i .
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EðrÞ ¼
Xi

m¼0

am rm ð6Þ

dE
dr
¼
Xi

m¼1

mam rm�1 ð7Þ

d2E

dr2 ¼
Xi

m¼2

m � ðm� 1Þam rm�2 ð8Þ

for a minimum;
dE
dr
¼ 0 and

d2E

dr2 > 0 ð9Þ

The full contiguous function is illustrated in Fig. 6; due to the
continuous repulsive nature at short distances this interatomic po-
tential describes the perturbation of the lattice surrounding the O00i
occupying the 1

2 ;
3
4 ;

3
4

� �
position correctly as illustrated in Fig. 7,

minimizing the atomic coordinates and predicting a point defect
energy of �9.53 eV. Thus proving the robust nature and suitability
of this form for subsequent simulations of the radiation damaged
lattice.

3.2.2. Cation–anion potentials
The Buckingham four range form is not applicable to the cation–

anion interaction due to the absence of a stationary point in the
function; thus the corresponding (standard) Buckingham form re-
ported by Jackson et al. [18] listed in Table 5 was investigated ini-
tially for U4+ � � � O2� interactions.

For the same reasons discussed previously when considering
anion–anion interactions, the presence of a positive C term causes
unphysical and catastrophic attraction when the ions are in close
proximity, in this instance closer than 1.1 Å. This phenomenon is
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Fig. 6. Plot of the O2� � � � O2� Buckingham four range potential.
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Fig. 7. Unrelaxed (a) and relaxed (b) UO2 lattice surrounding O00i .
illustrated by employing this potential and placing a uranium
interstitial U����i

� �
at the 1

2 ;
3
4 ;

3
4

� �
position. The result is shown in

Fig. 8 when the simulation fails to reach a minimum due to the col-
lapse of the lattice in on the (attractive) uranium interstitial ion.

To solve this issue, a novel cation–anion potential is derived in
which the C parameter is considered to be zero, thus representing a
function the Born–Mayer form. By judicious selection of a pair of A
and q parameters which take account of and incorporate the
attractive nature of the excluded (�C/r6) term, a robust potential
will describe the cation–anion interaction over the entire region
of interest.

GULP has enjoyed much success in deriving potentials using
empirical fitting algorithms embodied within the code: selected
parameters may be adjusted systematically (usually via a least
squares fitting technique) until optimal agreement is obtained be-
tween predicted and observed properties (such as structural and
lattice properties). However, a global minimum is not guaranteed
and in practice the results obtained by this method appear sensi-
tive to the initial starting configuration.

Thus to understand further the form and behaviour of the cat-
ion–anion parameters, a novel procedure was developed to survey
the potential landscape and select appropriate values for the A and
q parameters in a sequential manner. The initial stage of this pro-
cess involves screening a range of A and q values and observing the
discrepancy between predicted and observed structural properties.
Fig. 9 illustrates the potential surface by plotting the difference be-
tween predicted and observed UO2 lattice constant (a0) for a range
of A (750–2200 eV) and q (0.2–0.5 Å) values. The surface mesh is
interpolated to obtain combinations which reproduce a0 exactly
(i.e., where d = 0) as indicated by red lozenge markers.

It is of interest to note that within this selected range there is a
multitude pairs of values which reproduce the crystal structure.
However, a pair which also describe the physical characteristics
of the lattice are required for a reliable and robust model. Thus,
elastic constants predicted from this solution set are investigated
subsequently.

Elastic constants represent the second derivatives of the energy
density with respect to strain:

Cij ¼
1
V

@2U
@�i@�j

 !



Fig. 9. Plot of the difference between predicted and observed UO2 lattice constant
for A and q values of the U4+ � � � O2� Born–Mayer potential.
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thereby describing the mechanical hardness of the material with re-
spect to deformation. Since there are six possible strains within the
notation scheme, the elastic constant tensor within GULP is a 6 � 6
symmetric matrix. The 21 potentially independent matrix elements
are usually reduced considerably by symmetry, e.g. C11, C12 and C44

being unique elements for cubic UO2.
Employing the solution set identified in Fig. 9, predicted elastic

constants are plotted as a function of the A parameter as illustrated
in Fig. 10.

Here the observed values for C11, C12 and C44 reported by Fritz
[34], indicated by black circles, are used to determine a suitable
and representative value for the A parameter. The corresponding
q parameter value reproducing a0 is obtained subsequently from
interpolation of the solution set shown in Fig. 9.

The importance of the shell model, discussed earlier, to account
for polarization during calculation of defect energies in polar crys-
tals is highlighted by Catlow [12]: ‘‘Owing to its high dielectric
constant, UO2 illustrates in a particularly marked manner, the
problems encountered when calculating defect energies in polar
crystals”. Several examples quoted within this paper demonstrate
the requisite use of the shell model of Dick and Overhauser in de-
fect studies which correctly simulates both elastic and dielectric
properties; an essential requirement for reliable calculations of de-
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Fig. 10. Plot of elastic constants as a function of the A parameter.
fect energies. Thus, the final stage is to derive a spring constant (k2)
for the cation by empirical fitting to observed dielectric properties.

Dielectric properties are of crucial importance in many con-
texts, including those beyond the strictly bulk properties. For
example, the response of a solid to a charged defect depends on
the inverse of the dielectric constant. The actual value of the dielec-
tric constant varies according to the frequency of the electromag-
netic field applied. Commonly two extreme values are quoted,
namely the static (�0) and high frequency (�1) dielectric constants.
In the static limit all degrees of freedom of the crystal, both nuclear
and electronic, are able to respond to the electric field and there-
fore to provide screening. At the high frequency limit the oscilla-
tion is greater than the maximum vibrational frequency of the
material and therefore only the electrons are able to respond to
the perturbation fast enough.

Embodied within GULP, the static dielectric constant tensor can
be determined from the Cartesian second derivative matrix of all
particles, Dab, and the vector, q, containing the charges of all
particles:

e0
ab ¼ dab þ

4p
V

qD�1
ab q

� �
The expression for the high frequency dielectric constant is

identical to that for the static equivalent, except that the second
derivative matrix, Dab, now only includes the Cartesian compo-
nents for any shells present within the model. If a core only model
is being used then the high frequency dielectric tensor is just a unit
matrix. Hence information regarding the high frequency dielectric
constants is particularly useful in determining the parameters of a
shell model due to the relatively direct correlation.

Because the dielectric constant tensor depends on the inverse
second derivative matrix, it has many of the characteristics of the
Hessian matrix and is therefore quite a sensitive indicator of
whether a potential model is sensible. Extreme values, particularly
negative ones, instantly point to the fact that the potential model is
inadequate or that the system wishes to undergo a symmetry
change.

Fig. 11 illustrates a plot of the predicted zero and high fre-
quency dielectric constants as a function of spring constant (k2),
with reported values from Schoenes [35] superimposed. A value
for the spring constant is selected to provide optimal agreement
with both dielectric constants.

Values obtained from the above procedure are listed in Table 6.
Prior to assessing the applicability of these Born–Mayer param-

eters, the form of the potential function is compared to that of the
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Fig. 11. Plot of dielectric constants as a function of the spring, k2, parameter.



Table 6
Lattice potential for U4+ � � � O2� (Born–Mayer form).

Interaction Short-range parameters Shell model

A q Y k2

c eV Å jej eV Å�2

U4+ � � � O2� 1027.5967 0.402616 6.54 110.75343
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Fig. 12. Comparison between parameters for U4+ � � � O2� potential.
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Jackson Buckingham type. Fig. 12 shows both functions being in
accord from separation distances greater than 1.5 Å; thus confirm-
ing that the Born–Mayer form compensates for the loss of the
attractive C parameter over this range. Moreover, when the pair
of ions approach each other at separations less than 1.5 Å, the
Born–Mayer form (red line) continues to describe a repulsive inter-
action, unlike the Buckingham form where catastrophic attraction
begins to occur at 1.0 Å.

Applying this Born–Mayer U4+ � � � O2� potential to the previous
consideration of a uranium interstitial U����i

� �
at the 1

2 ;
3
4 ;

3
4

� �
position

results in convergence of the defect calculation predicting realistic
expansion of the oxygen sub-lattice to accommodate the intersti-
tial as illustrated in Fig. 13.

Thus, a set of potentials which describe the UO2 system and
continue to perform successfully under conditions of radiation
damage have been derived. The anion–anion Buckingham potential
listed in Table 4 is employed in conjunction with the cation–anion
Born–Mayer potential (Table 6).
(a) Unrelaxed (b) Relaxed

Fig. 13. Unrelaxed (a) and relaxed (b) UO2 lattice surrounding U����i .
3.3. Perfect lattice properties

The applicability of the model, and validation of potentials upon
which it is based, is assessed by comparison of predicted properties
of the perfect lattice to experimentally observed values. Table 7
shows excellent agreement between calculated parameters and re-
ported crystallographic structure, elastic constants and static and
high frequency dielectric constants.

However, the ability of the potentials to reproduce these
parameters accurately is unsurprising since they were all em-
ployed at various stages of the empirical fitting procedure. To val-
idate the model further, other properties are considered and
prediction compared once more to reported observation.

3.3.1. Mechanical properties
Bulk (K) and shear (G) moduli contain information pertaining to

the hardness of a material with respect to various types of defor-
mation and are much more facile to determine experimentally
than the elastic constant tensor. Considering the response of a
material as a function of applied isotropic pressure, an equation
of state can be fitted to a plot of pressure versus volume with the
bulk modulus comprising one of the curve parameters: typically,
a third or fourth order Birch–Murgnahan equation of state is em-
ployed. In addition, bulk and shear moduli are related to the ele-
ments of the elastic constant. However, since there is no unique
definition of this transformation, that of Voight is employed in this
study:

KVoight ¼
1
9
ðC11 þ C22 þ C33 þ 2ðC12 þ C13 þ C23ÞÞ ð10Þ

GVoight ¼
1

15
C11 þ C22 þ C33 þ 3ðC44 þ C55 þ C66Þ � C12 � C13 � C23½ �

ð11Þ

For a cubic system, symmetry provides the following equivalent
terms:

C11 � C22 � C33 ð12Þ
C44 � C55 � C66 ð13Þ
C12 � C13 � C23 ð14Þ

Thus, for the isotropic cubic crystal of UO2, bulk and shear mod-
uli are defined by the simplified relationships Eqs. (15) and (16)
respectively.

K ¼ 1
3
ðC11 þ 2C12Þ ð15Þ

G ¼ 1
15
ð3C11 þ 9C44 � 3C12Þ ð16Þ

Subsequent to the calculation of K and G, Young’s modulus and
Poisson’s ratio may be determined. Indeed, for homogeneous iso-
tropic materials, simple relationships enable bulk (K), shear (G)
and Young’s (E) moduli, in addition to Poisson’s ratio (m), to be
determined provided at least two of the terms are known [41].

Application of uniaxial tension to a material effects a lengthen-
ing which can be measured according to the strain. The ratio of
stress to strain defines the value of the Young’s modulus (E) for
that axis:

Ea ¼
raa

�aa
ð17Þ

Since materials tend to increase in length under tension, values
of this quantity are typically positive. As K and G are known, E may
be calculated by the following equation:

E ¼ 9KG
3K þ G

ð18Þ



Table 8
Calculated bulk properties for UO2.

Moduli

Reference Bulk Shear Young’s
K (GPa) G (GPa) E (GPa)

Fritz [34]a 208.9 ± 1.7 89.94 ± 0.2 236.0 ± 0.7
Calculatedb 208.29 89.80 235.54

Reference Poisson’s ratio Velocity

S-wave P-wave
m Vs Vp

– (km/s) (km/s)

Fritz [34]a 0.3117 ± 0.001 – –
Calculatedb 0.3115 9.04758 17.29242

a Calculated from reported elastic constants.
b Calculated from elastic constants listed in Table 7.

Table 9
Reported bulk properties for UO2.

Moduli Poisson’s

Reference Bulk Shear Young’s ratio
K G E m
(GPa) (GPa) (GPa) –

Wachtman et al. [33] 213.0 87.0 231.0 0.319
Padel et al. [36] 183.4 75.0 204.7 0.314
Marlowe [37] 203.2 82.1 217.2 0.323
Fritz [34] 209.0 83.0 221.0 0.324
Calculated 208.29 89.80 235.54 0.3115
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Complementary to Young’s modulus, the Poisson ratio (m) mea-
sures the change in a material at right angles to the uniaxial stress.
Formally defined as the ratio of lateral to longitudinal strain under
a uniform, uniaxial stress; assuming an isotropic medium, the fol-
lowing expression is used to calculate this property:

maðbÞ ¼ �SaabbYb ð19Þ

Poisson’s ratio is usually positive (since most materials natu-
rally shrink orthogonal to an applied tension) with typical values
for many materials lying in the range 0.2–0.3, below the theoretical
maximum of 0.5. As with Young’s modulus, Poisson’s ratio may
also be determined from K and G by the following equation:

m ¼ 3K � 2G
2ð3K þ GÞ ð20Þ

Acoustic velocities are key quantities in the interpretation of
seismic data. The polycrystalline averages of these acoustic veloc-
ities in a solid can be derived from the bulk and shear moduli of the
material, as well as the density, q. There are two values, that for a
transverse wave, Vs and that for a longitudinal wave, Vp, which are
given by the following equations:

Vs ¼

ffiffiffiffi
G
q

s
ð21Þ

Vp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Gþ 3K

3q

s
ð22Þ

Employing calculated elastic constants listed in Table 7,
mechanical properties of the perfect bulk are predicted using the
above relationships: listed in Table 8, these parameters agree
favourably with those calculated from the elastic constants re-
ported by Fritz [34] in Table 1 and his reported values listed in Ta-
ble 3.

To enable direct comparison with observation, bulk properties
listed in Table 8 were derived from elastic constants; although
good accord is observed with other reported values (Table 9). How-
ever, in practice, these mechanical properties are obtained directly
from algorithms embodied within GULP: Subsequent to the deter-
mination of the optimized structure for a material, a wide range of
physical properties may be calculated based on the curvature of
the energy surface about the minimum which include both
mechanical properties, such as the bulk modulus and elastic con-
stants, as well as dielectric properties.
3.3.2. Phonon modes
It is of interest, and also important in the further validation of

the potentials, to observe the degree to which other bulk lattice
properties may be calculated by the model. The phonon spectrum
has been measured at room temperature by Dolling et al. [32] and
Table 7
Comparison of predicted and observed properties of UO2.

Property Units Calculated Observed D (%)

Lattice constant
(a0) Å 5.4682 5.4682 0.0
U4+ � � � U4+ separation Å 3.8666 3.8666 0.0
U4+ � � � O2� separation Å 2.3678 2.3678 0.0
O2� � � � O2� separation Å 2.7341 2.7341 0.0
C11 GPa 391.4 389.3 0.5
C12 GPa 116.7 118.7 �1.7
C44 GPa 58.1 59.7 �2.7
Dielectric constants
Static 24.8 24.0 3.3
High frequency 5.0 5.3 �5.7
comparison to the calculated phonon dispersion curves (at 0 K) is
shown in Fig. 14.

Fig. 14 shows the measured dispersion curves for the symmetric
directions [00n], [nn0] and [nnn], or, in group-theory notation1, D,
R and K. It is of interest to note that whilst excellent agreement is
observed with the majority of the acoustic and optical modes,
calculations for branches exhibiting a temperature dependence con-
sistently have lower wavenumber commensurate with the tempera-
ture difference between the two data sets.

In agreement with observations reported by Dolling et al., the
model predicts triply degenerate representations corresponding
to the acoustic modes (244.18 cm�1); the lifting of the degeneracy
by macroscopic electric field associated with the longitudinal optic
modes (543.46 cm�1) and the irreducible representation (xR) cor-
responding to a triply degenerate mode with the oxygen ions
vibrating in antiphase (416.58 cm�1).

The accurate prediction of phonon dispersion curves using
atomistic simulation is dependent upon the spring constants of
both ion species. Further discussion on the role of the shell model
in calculating phonon frequencies is reported elsewhere [24,42,43].
However, since the overall agreement and trends are both very rea-
sonable and certainly commensurate with that reported by Jackson
et al. [18], the validity of the derived spring constants, to which
phonon calculations are sensitive, is demonstrated.

Crystals with the fluorite structure possess a simple vibrational
spectrum, here UO2 exhibits one infrared active phonon with T1u

symmetry and, at long wavelengths (k = 0), a single Raman-active
phonon of T2g symmetry. The long wavelength mode comprises
each atomic sub-lattice in relative motion (U–O stretching) and
as such is triply degenerate. The calculated frequencies of some se-
lected normal modes are given in Table 10 and compared to mea-
sured frequencies reported in the literature.
1 Described in further detail by Dolling et al. [32]
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Table 11
Calculated formation energies of isolated atomic defects.

Type of defect Position Formation energy (eV)

U4+ Vacancy V0000U

� �
(0,0, 0) 78.12

O2� Vacancy V���O
� �

1
4 ;

1
4 ;

1
4

� �
16.14

U4+ Interstitial U����i

� �
1
2 ;

1
2 ;

1
2

� � �60.91

O2� Interstitial O00i
� �

1
2 ;

1
2 ;

1
2

� � �11.52

Region I comprises 1600 ions.

Table 10
Phonon frequencies for UO2 derived from optical spectroscopy and comparison with
calculated.

Infra red (T1u) Raman (T2g)

Reference xTO (cm�1) xLO (cm�1) xR (cm�1)

Schoenes [35] 280 ± 2 578 ± 2 –
Axe and Pettit [44] 278 ± 2 556 ± 4 –
Dolling et al. [32] 284 ± 4 557 ± 20 447 ± 5
Calculated 244.18 543.46 416.58
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The initial slopes of the acoustic branches are consistent with
independent measurements of the elastic constants [32–34] and
the frequencies of the Transverse Optical (xTO) and Longitudinal
Optical (xLO) modes at q = 0 are consistent with the measured sta-
tic and high frequency [32,35] dielectric constants (�0 and �1
respectively) through the Lyddane–Sachs–Teller relation [45]:

xLO

xTO

� 	2

q¼0
¼ �0

�1
ð23Þ
3.4. Defect properties and intrinsic defect behaviour

Calculations were performed first on the energies of isolated
point defects (vacancies and interstitials) which are given in Table
11. In all cases, the lattice ions surrounding the defect are allowed
to relax in the energy minimization procedure using the previously
described Mott–Littleton procedure. Calculated values for defect
formation energies are compared with experimental observation
reported in the literature [46–52].

3.4.1. Frenkel and Schottky energies
Individual point defect energies are combined to predict Frenkel

and Schottky disorder formation energies (reported in Table 14).
Frenkel defects can be represented by the following reactions
employing Kröger–Vink notation [53]:

U�U�V0000U þ U����i ð24Þ
O�O�V��O þ O00i ð25Þ

Similarly, the Schottky defect can be expressed as:



Table 12
Calculated energies of oxygen Frenkel pair defects.

Type of defect V ��O position O00i position Formation energey (eV/defect) Binding energey (eV/defect)

OFP 1 � 1
4 ;� 1

4 ;� 1
4

� �
1
2 ;

1
2 ;

1
2

� �
1.62 �0.69

OFP 2 � 1
4 ;� 1

4 ;
1
4

� �
1
2 ;

1
2 ;

1
2

� �
1.90 �0.41

Fig. 15. Lattice positions of uranium and oxygen vacancies associated with the
Schottky defect, with the three possible sites for the second oxygen vacancy
labelled.

Table 13
Calculated formation energies of U4+ and O2� pair defect clusters.

Type of defect Second V��O
position

Formation energey
(eV/defect)

Binding energey
(eV/defect)

Sch. 1 � 1
4 ;� 1

4 ;� 1
4

� �
35.60 �1.20

Sch. 2 � 1
4 ;þ 1

4 ;� 1
4

� �
35.57 �1.23

Sch. 3 � 1
4 ;þ 1

4 ;þ 1
4

� �
35.80 �1.00

Table 14
Calculated energies of ionic defect clusters.

Formation energy

Type of defect Infinite dilution
(eV/defect)

Defect cluster
(eV/defect)

Experimental
observation
(eV/defect)

Uranium Frenkel pair 8.15 6.17 4.75–6.3
Oxygen Frenkel pair 2.19 1.62–1.90 1.55–2.7
Schottky defect 2.62 1.50 2.00–2.3

Region I comprises 1746 ions.
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U�U þ 2O�O�V0000U þ 2V��O þ UO2ðSurfÞ ð26Þ

However, calculating formation energies in this manner assumes
infinite dilution and omits the binding energy associated with the
aggregation of point defects required to be taken into account in or-
der for comparison to experimental observation. The following clus-
ter calculations address this issue.

3.4.2. Frenkel pair clusters
Formation energies of oxygen and uranium Frenkel Pairs at infi-

nite distance are predicted to be higher than those observed by
experiment. Thus, in order to compare to reported data, defect
clusters are simulated and the binding energy determined as the
difference in energy between the cluster and its constituent point
defects at infinite dilution.

For simulations where the oxygen interstitial is placed in close
proximity to the vacancy, recombination is observed to occur dur-
ing the geometry optimization procedure unless the oxygen inter-
stitial is constrained. Thus, in order to calculate a cluster energy the
oxygen defects were separated by a (lattice) uranium ion to pre-
vent recombination. Two geometries for the Oxygen Frenkel pair
(OFP) were considered and the respective coordinates and result-
ing energies are listed in Table 12.

3.4.3. Schottky defect clusters
In a similar manner, three configurations for the ion vacancies

associated with the Schottky Defect were simulated. With an initial
uranium vacancy at (0,0,0) and the first oxygen vacancy at 1

4 ;
1
4 ;

1
4

� �
,

the second oxygen vacancy required to preserve charge neutrality
was considered at (i) � 1

4 ;� 1
4 ;� 1

4

� �
(Sch. 1), (ii) � 1

4 ;þ 1
4 ;� 1

4

� �
(Sch.

2) and (iii) � 1
4 ;þ 1

4 ;þ 1
4

� �
(Sch. 3) as illustrated in Fig. 15.

Defect formation energies for the three types of vacancy clus-
ter associated with the Schottky defect are listed in Table 13. The
most energetically favourable position for the second oxygen va-
cancy is predicted to be in Sch. 2 configuration and this cluster
energy is combined with the associated energy of forming
UO2 at the surface to predict the Schottky defect energy listed
in Table 14.

The predicted defect energies listed in Table 14, once allowing
for the associated binding energy, are in good agreement with
measured experimental values providing further evidence for the
suitability of the potential set.
4. Conclusions

The present study has illustrated the importance of a robust
procedure in the derivation of interatomic pair potentials and that
they need to be applicable to the complete range of interest of con-
cern to post radiation damaged systems. Furthermore, by employ-
ing atomistic computer simulation techniques, intrinsic defects
inherent in UO2 that contribute to key solid state properties are
able to be investigated. The report has drawn attention to the fol-
lowing main features:

Starting from a solution set of parameters which reproduce the
crystallographic structure correctly, values are selected based in
their ability to reproduce additional physical aspects of the lattice
(e.g. elastic and dielectric constants).

A thorough understanding of the potential form and behaviour
of constituent variables is paramount to their effective use in
describing interatomic forces operating at separation distances
applicable to radiation damaged material.

Additional bulk material properties (e.g. bulk, shear and Young’s
moduli and Poisson’s ratio) calculated using the derived potentials
are in good agreement with experimental observation.

The harmonic spring constant employed by the shell model (fit-
ted to observed dielectric constants) reproduces the phonon dis-
persion curves at frequencies in reasonable agreement with those
reported in the literature.

Subsequent to the validation of potentials using the pure lattice,
calculated energies of intrinsic point and cluster defects are used to
predict Frenkel and Schottky energies which lie within the range of
those observed by experiment.

Schottky defects and Oxygen Frenkel pairs are calculated to be
the most energetically preferred form of intrinsic defects.

5. Future work

The methodology described within this report has proven to be
applicable to the derivation of interatomic pair potentials for acti-
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nide oxides. Having proven the ability of these potentials to de-
scribe the bulk lattice of UO2, the next logical stage will be to per-
form bulk terminated surface simulations to assess the
transferability of the potentials and to recalculate the intrinsic de-
fect energies to predict whether they are thermodynamically more
stable dissolved in the bulk or at specific surfaces.

Once a comprehensive suite of static calculations has been com-
pleted, the potentials will be employed in molecular dynamic sim-
ulations which will provide a fundamental mechanistic insight into
anion transport mechanisms and activation energies over a range
of temperatures in order to derive diffusion coefficients from
Arrhenius plots.

The combination of atomistic simulations provides access to the
scale and temperature domains required to provide fundamental
parameters which will underpin higher level constitutive models
which predict the kinetics of materials ageing.
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